TCC: O USO DAS MÍDIAS NO ENSINO DA MATEMÁTICA

Leia livros sobre este assunto

PUBLICIDADE

Resumo

Este trabalho: O Uso das Mídias no Ensino da Matemática têm como finalidade principal evidenciar a necessidade de novas práticas didático-metodológicas com o uso das mídias e tecnologias nas escolas, favorecendo, assim, o aprendizado dos alunos, tendo em vista, a construção do conhecimento. O grande diferencial mostrado será a incrementarão de novas formas de apresentar a matemática aos alunos utilizando as Mídias como instrumento transformador.

Tratará, também, de um projeto desenvolvido para ser ministrado como complemento às aulas do Ensino Médio. Terá a finalidade de estimular os alunos ao desenvolvimento de saberes e habilidades tão necessárias a compreensão da matemática. Reforçando as idéias de pedagogia de projetos dentro do contexto de ensino.

Dentre os inúmeros pontos matemáticos, nos ateremos ao estudo de gráficos.

PUBLICIDADE

Dando sentido e movimentos a figuras. Para tal, utilizaremos a ferramentas (softwares matemáticos) GeoGebra.

Será explorado os Ambientes Interativos Virtuais no ensino mediador, trazendo para o contexto escolar as Tecnologias da Informação e Comunicação (TIC’s) no uso do ciberespaço em prol de uma maior interação do professor com o aluno, tão necessárias no acompanhamento pedagógico do educando.

Palavras-chave: Educação, comunicação, mídias, interação, matemática.

Abstract

This work, The Use of  Media in Teaching Mathematics, main purpose is to highlight the need for new didactic and methodological with the use of media and technology in schools, thus favoring the learning of students in order to build knowledge. The big difference will be shown the increment of new ways of presenting mathematics to students using the media as an instrument transformer.

Treat, too, a project designed to be administered as a supplement to classes in high school. Will be designed to encourage students to develop knowledge and skills so necessary to the understanding of mathematics. Reinforcing the ideas of pedagogy of projects within the context of education.

Among the many mathematical points, we will stick to the study of graphs. Giving direction and moves the figures. To this end, we use the tools (mathematical software) GeoGebra.

Will be explored Interactive Virtual Environments in education mediator, bringing to the school context Information Technology and Communication (ICT) use of cyberspace to promote greater interaction with the student teacher, so necessary in the monitoring of student teaching.

Keyword: Education, communication, media, interaction, mathematics.

7 SUMÁRIO

1. INTRODUÇÃO 9
2. FUNDAMENTAÇÃO TEÓRICA 12
2.1. Zona de Desenvolvimento Proximal e a Função da Linguagem 12
2.2. Pedagogia crítico-social dos Conteúdos 14
2.3. Conceituação, manipulação e aplicações 15
3. CONTEXTUALIZAÇÃO E PROBLEMATIZAÇÃO 17
3.1 A matemática: Breve Análise 18
3.2. A pedagogia de projetos 19
4. PRÁTICAS DE ENSINO UTILIZANDO AS MÍDIAS 21
4.1. Software GeoGebra 3.0 2
4.2. Lista de discussão 2
4.3. Exploração de Ambientes Interativos Virtuais Assíncronos 24
5. AVALIAÇÃO 25
6. CONSIDERAÇÕES FINAIS 26
7. REFERÊNCIAS BIBLIOGRÁFICAS 27
8. APÊNDICE 29

“Se um modelo é inadequado para atingir determinados objetivos, é natural tentar caminhos que permitem construir outro melhor.

1. INTRODUÇÃO

Após a década de 1980 temos presenciado uma acelerada revolução tecnológica que, ao passar dos anos, tem demandado um novo perfil de profissional para atuar no mercado de trabalho.

A partir dos anos 80, dentre as conquistas tecnológicas destacam-se os transportes ultra-rápidos, a automação, a comunicação eletrônica. “Aviões, rádio, televisão, fax, satélites e a rede cada vez mais expandida da Internet subvertem o espaço e o tempo do homem contemporâneo, aproximando os povos e alterando a maneira de pensar e trabalhar.” (Aranha, 2001, p.234).

A escola não tem conseguido acompanhar essas mudanças. A distância do mundo real com tais recursos mostra uma ineficiência na formação escolar de indivíduos para o mercado de trabalho e para a vida.

“Hoje, o jovem cresce num mundo eletricamente estruturado. Não é um mundo de fragmentos, mas de configuração e estruturas. O estudante, hoje, vive miticamente e em profundidade. Na escola, no entanto, ele encontra uma situação organizada segundo a informação classificada. Os assuntos não são relacionados. Eles são visivelmente concebidos em termos de um projeto ou planta arquitetônica. O estudante não encontra meio possível de participar dele, nem consegue descobrir como a cena educacional se liga ao mundo mítico dos dados e experiências processados eletronicamente e que para ele constitui ponto pacífico. Como diz um executivo da IBM: “Quando entraram para o primeiro ano primário, minhas crianças já tinham vivido diversas existências, em comparação aos seus avós””. (Mcluhan, p.1, 2007)

As idéias de exposição de conteúdos em sala de aula usando apenas quadro e giz, desenhos ou livros tem se mostrado muito ineficaz em se tratando de conteúdos que exigem mais que formas e cores como o caso de tópicos da matemática. Em cada nível de estudo o aluno se depara com a introdução de novos conceitos matemáticos em que o entendimento exige mais do que palavras, exige desenhos, gráficos, construções que representam grandezas, conceitos, resultados. E na grande maioria dos casos o professor se depara com limitações de recursos metodológicos que esses materiais têm. O que não conseguirá ir muito além do que a imaginação do aluno consiga chegar. Como exemplo, temos os gráficos de funções. Caracteriza assim a necessidade de sanar tais deficiências com o incremento de novas ferramentas.

Há algum tempo, existe uma preocupação em facilitar e agilizar construções, buscar melhores ferramentas que ajudem a potencializar o aprendizado dos alunos em sala de aula, fazendo com que a formulação de conceitos matemáticos seja mais bem percebida e assimilada. Com uma infinidade de programas, como o GeoGebra, Geometricks, Grafmatica, WinPlot, que facilitam essas visualizações tanto pelo aspecto gráfico e organizado, quanto pelas animações a que essas ferramentas garantem.

Vale ressaltar que a implementação de animações nos softwares educativos fundamenta-se no conceito “ideografia dinâmica” que segundo (Levy, 1996, p. 92) “aborda o problema da representação do conhecimento por meio de signos dotados de movimento”.

O professor de hoje tem que ter a mão todas as ferramentas disponíveis para atrair e prender a atenção dos alunos. Com a popularização da tecnologia, a leitura de mundo mudou, está cada vez mais cheio de sons, imagens e interação; o professor dificilmente conseguirá ensinar um conteúdo sem o auxilio dessas ferramentas, ou seja, sem, antes, prender a atenção do aluno. Instigar a curiosidade do aluno não é tarefa fácil.

(…) cabe ao professor promover a aprendizagem do aluno para que este possa construir o conhecimento dentro de um ambiente que o desafie e o motive para a exploração, a reflexão, a depuração de idéias e a descoberta. (Almeida, 2000)

As ferramentas de comunicação das Tecnologias da Informação e

Comunicação, e com a difusão da internet e dos portais de interação (chamados sites sociais) a comunicação tem criado outra face, mais atraente e interativa. A escola tem que implementar tais recursos na prática, trazendo para dentro da prática educacional esses recursos de interação e comunicação, diga-se de passagem – com potencialidades cognitivas – que servirá de facilitador no acompanhamento do professor a atividade realizada, tanto na comunicação, quanto na interação.

Segundo McConnel (1999), o sistema educacional pode não estar particularmente preocupado em promover a cooperação no processo de aprendizagem, mas, de alguma forma, os alunos trabalham juntos informalmente e compartilham sua aprendizagem, dependendo de um contexto específico. Eles cooperam porque percebem as vantagens de partilhar o que sabem e, intuitivamente, adotam uma visão social do processo de aprendizagem. Para tais o professor tem a disposição ferramentas síncronas e assíncronas como: blogs, salas de bate-papo, comunidades como o Orkut, facebook, msn, listas de discussões, wikispaces, compartilhadores de arquivos, sites de busca, entre outros.

12 2. FUNDAMENTAÇÃO TEÓRICA

É importante compreender o modo como as pessoas aprendem e as condições necessárias para a aprendizagem, bem como identificar o papel de um professor nesse processo. Estas teorias são importantes porque possibilitam ao mestre adquirir conhecimentos, atitudes e habilidades que lhe permitirão alcançar melhor os objetivos do ensino.

As teorias de aprendizagem buscam reconhecer a dinâmica envolvida nos atos de ensinar e aprender, partindo do reconhecimento da evolução cognitiva do homem, e tentam explicar a relação entre o conhecimento pré-existente e o novo conhecimento. A aprendizagem não seria apenas inteligência e construção de conhecimento, mas, basicamente, identificação pessoal e relação através da interação entre as pessoas.

Seguem algumas implicações que terão base teórica na elaboração destas práticas. Segue o conceito de Zona de Desenvolvimento Proximal – ZDP e na função da linguagem – (Vygotsky, 1988), na pedagogia sócio-crítica de conteúdo – (Libâneo 1985), no pensamento pedagógico positivista – (Durkheim, 1978), no pensamento pedagógico socialista – Gramsci (1968) e especificamente no que tange ao conteúdo de matemática, nos três pilares: conceituação, manipulação e aplicação – (Elon Lages Lima, 2000).

Será exposto, das teorias citadas acima, apenas o que se julga necessário para fundamentar a presente prática docente.

2.1. Zona de Desenvolvimento Proximal e a Função da Linguagem

Vygotsky (1988) em sua obra, A formação social da mente, considerava a existência, na mente dos aprendizes, de uma Zona de Desenvolvimento Proximal (ZDP), que representa a diferença entre o que o aprendiz pode fazer individualmente e aquilo que é capaz de atingir com a ajuda de pessoas mais experimentadas, como o professor, ou em colaboração com outros aprendizes mais aptos na matéria.

A idéia da ZDP de Vygotsky é ilustrada e comparada com uma “janela de aprendizagem” em que ela pode variar de tamanho dependendo do instante em que vive o desenvolvimento cognitivo do sujeito. Estas podem ser de formas bem variadas sendo quase impossíveis aparecer repetições de “janela de aprendizagem” em um conjunto de pessoas.

A implicação óbvia da aplicação desta idéia de “janela de aprendizagem” no desenho de contextos de aprendizagem é a necessidade de se garantir, a cada grupo de aprendizes, um leque diversificado de atividades e de conteúdos, de modo que eles possam personalizar a sua aprendizagem dentro da estrutura das metas e objetivos de um determinado programa de aprendizagem (…). (Fino, 2001, 21p.)

Em seu livro, A formação social da mente de Vygotsky, (1988) afirma, ainda, que são ineficazes, em termos de desenvolvimento, as aprendizagens orientadas para níveis de desenvolvimento que já foram atingidos ou que estejam alem da compreensão do aluno, porque não apontam para um novo estágio no processo de desenvolvimento. A consideração da ZDP possibilita a proposta de “boas aprendizagens”, que são as que conduzem a um avanço no desenvolvimento, onde as boas aprendizagens são aquelas que incidem na Zona de Desenvolvimento Proximal.

A aprendizagem interage com o desenvolvimento, produzindo abertura nas Zonas de Desenvolvimento Proximal nas quais as interações sociais são centrais, estando então, ambos os processos, aprendizagem e desenvolvimento, inter-relacionados; assim, um conceito que se pretenda trabalhar, como por exemplo, operação com polinômios requer sempre um grau de experiência anterior para a criança, operações com números reais.

Para (Vygotsky, 1988), a atividade do sujeito refere-se ao domínio dos instrumentos de mediação, inclusive sua transformação por uma atividade mental. Logo o desenvolvimento cognitivo é produzido pelo processo de internalização da interação social com materiais fornecidos pela cultura, sendo que o processo se constrói de fora para dentro.

Ele fala, também, que o sujeito, de forma natural não é somente ativo, mas interativo, isso porque relaciona intra e interpessoalmente e constrói conhecimento.

É na troca com outros sujeitos e consigo próprio que se vão internalizando conhecimentos, papéis e funções sociais, o que permite a formação de conhecimentos e da própria consciência. Trata-se de um processo que caminha do plano social – relações interpessoais – para o plano individual interno – relações intra-pessoais.

O papel da linguagem também foi frisado por Vygotsky (1988) como sendo uma particularidade humana de grande potencialidade cognitiva em que na junção da palavra (signo) com a vivência prática surge então à inteligência humana.

Para ele o processo de desenvolvimento do raciocínio é social e a linguagem é o elo entre o social e o individual através do qual as atividades sociais externas são internalizadas.

2.2. Pedagogia crítico-social dos Conteúdos

A escola tem como papel transformador a transmissão de saberes que garantam a formação do educando para a vivência de mundo garantido habilidades, sendo elas no trabalho, no social e em todos os segmentos da vida.

“(…) a atuação da escola consiste na preparação do aluno para o mundo adulto e suas contradições, fornecendo-lhes um instrumental, por meio da aquisição de conteúdos e da socialização da sociedade.” (Libâneo, 1985, p. 39)

Os conteúdos, neste enfoque, são aqueles conteúdos culturais universais, incorporados pela humanidade, mas sempre reavaliados frente às realidades sociais. Os conteúdos não são só ensinados, mas se ligam, de forma indissociável ao seu significado humano e social.

Com isso passa-se da experiência imediata e desorganizada ao saber sistematizado.

Para (Libâneo 1985, p.39), a ciência que é utilizada na elitização da sociedade, deve fazer o contrário; para ele o aluno deve ter acesso à ciência para que possa ter condições de elevar o seu nível social. Entende que não basta ter como conteúdo escolar às questões sociais atuais, mas que é necessário que se tenha domínio de conhecimentos, habilidades e capacidades mais amplas para que os alunos possam interpretar suas experiências de vida e defender seus interesses de classe.

Ao querermos que o aluno comece a pensar matematicamente é preciso que haja uma aprendizagem dos conceitos matemáticos através da resolução de problemas, deixando de nos preocupar tanto com os resultados, mas com os processos.

Portanto a prática pedagógica considera o meio em que o aluno vive e seus saberes adquiridos com essa convivência.

2.3. Conceituação, manipulação e aplicações

A organização do ensino da matemática deve ser feita segundo o tripé: conceituação, manipulação e aplicação. Para (Lima, 2000, p. 1) é preciso considerar na organização do ensino da matemática a natureza peculiar da própria matemática, os alunos aos quais ela se destina e os motivos pelos quais faz parte do currículo.

A conceituação compreende a formulação correta e objetiva das definições matemáticas, o enunciado preciso das proposições, a prática do raciocínio dedutivo, (…). É importante ter em mente e destacar que a conceituação é indispensável para o bom resultado das aplicações. (Lima, 2000, RPM 41, p. 1)

Já a manipulação é importante, pois, torna os métodos, termos e símbolos acessíveis ao aluno. Além disso, estando familiarizado com os conceitos matemáticos o aluno se torna independente para aplicar a matemática a situações da vida real, passando de mero aplicador de fórmulas a autonomia cognitiva, ou seja, o aluno consegue raciocinar e criar conceitos a partir do conteúdo trabalhado.

A manipulação, (…), está para o ensino e o aprendizado da Matemática, assim como a prática dos exercícios e escalas musicais está para a música (…). A habilidade e a destreza no manuseio de equações, fórmulas e construções geométricas elementares, (…), permitem ao usuário da Matemática concentrar sua atenção consciente nos pontos realmente cruciais, poupando-o da perda de tempo e energia com detalhes secundários. (Lima, 2000, RPM 41, p.2)

Portanto a manipulação é o repetido manuseio dos conceitos já estudados de forma a torná-los algo simples e imediato, importante para que o aluno possa dar mais atenção a situações mais relevantes e ainda inexploradas por ele.

De acordo com Lima (2000):

tecnológicas, quer mesmo sociais (Lima, 2000, RPM 41, p. 3).

As aplicações são empregos das noções e teorias da Matemática para obter resultados, conclusões e previsões em situações que vão desde problemas triviais do dia-a-dia a questões mais sutis que surgem noutras áreas, quer científicas, quer

A aplicação consiste então na interação entre o mundo paralelo da matemática e o mundo real, ou seja, na utilização dos conceitos desenvolvidos pela matemática, fundamentados em hipóteses meramente matemáticas para resolver situações-problema do mundo real, tornando a matemática uma ferramenta indispensável à educação.

É preciso tomar muito cuidado ao dosar cada uma destas componentes, pois o excesso de uma em detrimento das outras pode causar danos ao aprendizado dos alunos, tornando inútil o ensino da matemática.

Assim, um professor comprometido com sua profissão estará sempre se policiando para não exagerar em nenhuma destas componentes, mas sim para obter um equilíbrio harmonioso na utilização das três, uma permeando a utilização da outra.

17 3. CONTEXTUALIZAÇÃO E PROBLEMATIZAÇÃO

Este capítulo trata da origem da idéia em criar uma prática em que une os três pilares: mídia, comunicação e acompanhamento. O objetivo aqui é a criação de formas mais inovadoras de transmissão de conhecimento e a criação do espírito investigativo nos alunos e ao incentivo da autonomia cognitiva com o uso de ferramentas de manuseio da matemática, em especial os gráficos e a comunicação interativa que as Tecnologias de Informação e Comunicação traz ao meio social e acadêmico. Objetiva, também, a dinamização das aulas com uso de softwares desenvolvidos especialmente para inovar e facilitar a prática pedagógica em sala de aula. Sabe-se que em exposição de conteúdos matemáticos, muitas vezes, fica prejudicado devido à limitação pedagógica das ferramentas que o professor dispõe. Por exemplo, em nossa prática de exposição de gráficos, fica quase impossível demonstrar em uma aula e com clareza todos os casos de variação dos coeficientes de uma função do segundo grau, utilizando somente quadro e giz. Já com o “software” matemático que tem o objetivo de descrever o gráfico quando se adiciona valores aos coeficientes, disponibiliza essas imagens aos alunos que imediatamente entende as implicações que tal coeficiente “produz” no gráfico, e com isso, consegue construir suas próprias conclusões.

“Em Matemática existem recursos que funcionam como ferramentas de visualização, ou seja, imagens que por si mesmas permitem compreensão ou demonstração de uma relação, regularidade ou propriedade. (Brasil, 1998, p.45)

O pressuposto aqui encontrado parte do consenso universal de que estudar matemática e em especial o estudo de gráficos é tarefa árdua e complexa. É necessário o emprego de muita imaginação e técnicas sofisticadas de confecção e estudo de gráficos, que pode fugir do objetivo de se ensinar as implicações dos coeficientes de funções em seus respectivos gráficos.

Muitas vezes o aluno tem que realizar inúmeras hipóteses no problema matemático, para, deste então, analisar o que ocorre e entender melhor como reage o gráfico e as incógnitas e parâmetros em que influenciará no resultado tendo assim alterações relevantes ao problema que gerou o gráfico. Casos assim implicam em mais trabalho fazendo com que o problema recomece e com ele todo o trabalho que já estava pronto. Nessa linha de pensamento os objetivos cognitivos da aula podem ser perdidos e o foco perdido em tanta manipulação de números e técnicas.

Portanto, partimos do pressuposto que o uso de recursos tecnológicos para a facilitação de tarefas repetitivas e maçantes faz parte de uma prática benéfica em sala de aulas, tendo em vista que o ensino ficaria inviável se não abreviar os detalhes já discutidos e de conhecimento geral dos alunos. Como exemplo ilustrativo, podemos citar a prática em séries finais do Ensino Médio, substituindo pela máquina de calcular os algoritmos da multiplicação, facilitando a prática em sala, visto que quaisquer alunos destas séries já dominam com desenvoltura tais algoritmos e sua repetição se faz desnecessária.

Para tanto existem recursos inovadores que facilitam a criação e manipulação de gráficos. O software livre GeoGebra, criado por Markus Hohenwarter, aqui utilizado, é um destes programas que de forma clara, simples, colorida e de fácil manuseio, dá a construção de gráficos uma fácil tarefa.

O GeoGebra é um software de matemática dinâmica que reune geometria, álgebra e cálculo. É desenvolvido principalmente para o ensino e aprendizagem da matemática nas escolas básicas e secundárias.

3.1 A matemática: Breve Análise

Baseado nos Parâmetros Curriculares Nacionais – PCN’ (Brasil 1998) em que trata das reformas educacionais e curriculares segue um breve resumo da história do ensino da matemática após a década de vinte até os dias atuais, na ótica tradicionalista.

Em meados dos anos vinte inicia se uma tentativa de transformar a realidade elitista do ensino da matemática, marcando a primeira tentativa de reformular o ensino matemático, o que não tem muito sucesso. Em meados dos anos 60 com o surgimento da Matemática Moderna apoiada na teoria dos conjuntos ressurgem novas tentativas de mudança que fracassam novamente. Na década de 70 a Educação Matemática começa a aparecer. Especialistas descobrem como se constrói o conhecimento nas crianças e estudam, desde então, formas de reorganizar esses conteúdos e ensiná-los. Isto causa uma divisão entre os matemáticos que não concordaram com a mudança no ensino da ciência. Nos anos 80 surge a “Agenda para Ação” sugerindo a Resolução de Problemas como solução para o ensino mais eficaz da matemática, idéia que parece não ter vingado muito. Na década de 90 aparecem os Parâmetros Curriculares Nacionais – PCN’s, feitos para as oito séries (agora, nove anos) do Ensino Fundamental com um capítulo criado especialmente para a disciplina, desenvolvido por membros representantes do Movimento de Educação Matemática.

Na atualidade, as metodologias de ensino da matemática têm ganhando espaço. A resolução de problemas, modelagem matemática, etnomatemáticas, transversalidade, jogos matemáticos estão cada sendo inseridos nas escolas e com bons resultados (Santos, 2010, p. 1 e 2).

3.2. A pedagogia de projetos

A Pedagogia de projetos tem surgido de forma a sistematizar a prática pedagogia e modelar meios de práticas pedagógicas que tenha o objetivo de utilizar melhor a prática na construção do conhecimento. Esse pensamento pode ser reafirmado pelas palavras de Prado:

Na pedagogia de projetos, o aluno aprende no processo de produzir, de levantar dúvidas, de pesquisar e de criar relações, que incentivam novas buscas, descobertas, compreensões e reconstruções de conhecimento. (Prado, 2010, p.1)

A idéia fundamental de nossa prática é o projeto, tendo como centro a elaboração de situações e atividades que usam os princípios do projeto. O aluno terá a prática como foco e nela a construção do conhecimento; aprendendo a ser sujeito atuante e investigativo, desenvolvendo habilidades como: criar estratégias, elaborar conceitos, buscar informações, trabalhar em grupo. Veja o que diz Prado:

A pedagogia de projetos deve permitir que o aluno aprenda-fazendo(…) durante o desenvolvimento do projeto(…) o aluno precisa selecionar informações significativas, tomar decisões, trabalhar em grupo, gerenciar confronto de idéias, enfim desenvolver competências interpessoais(…) (Prado, 2010, p. 5)

A prática com projetos será criada com situações em que os alunos possam buscar nas mídias envolvidas, respostas, seja pela interação com os demais sujeitos envolvidos (alunos, professores) ou pela capacidade cognitiva que o “software” ou ferramenta midiática, possui.

4. PRÁTICAS DE ENSINO UTILIZANDO AS MÍDIAS

Sabemos que toda prática em sala de aula deve ser bem planejada e sistematizada, nesse capítulo será apresentado um tripé que, garantirá melhoria no ensino de gráficos matemáticos, pela visualização dinamizada de mudanças ocorridas em gráficos com a alteração dos valores dos coeficientes de funções polinomiais, exponenciais, logarítmicas, afins, quadráticas, entre outras.

Em seguida será incluída a prática com lista de discussão no ambiente de ensino. Esta lista é feita como redistribuidor de e-mails (em nossa prática sugerimos o Yahoo-Grupos, pela facilidade e gratuidade do serviço), todos os alunos que mandarem um e-mail para o endereço automaticamente o provedor reenvia uma cópia para todos os endereços pré-cadastrados.

Essa lista terá como objetivo atrair o aluno para a discussão, dando condições para uma ampla discussão entre os colegas de estudo e o professor. A lista coloca, também, o aluno em condição ativa e ator do conhecimento.

Em último a inclusão dos Ambientes Interativos Virtuais Assíncronos e

Síncronas que será outra forma de comunicação às vezes aberta,como o caso dos fóruns e a já falada lista de discussão, outras vezes fechada, utilizando o Messenger (Msn) ou o e-mail pessoal direcionado a uma pessoa em particular.

Em todos os casos citados o uso das Tecnologias da Informação e Comunicação se caracterizará de forma ampla e controlada em prol de uma melhoria no ambiente matemático e escolar.

2 4.1. Software GeoGebra 3.0

Segundo o manual do GeoGebra 3.0 feito pelos autores Markus

Hohenwarter da universidade americana Florida Atlantic University e Judith Preiner, tradução de Antonio Ribeiro em outubro de 2007 e disponível no sitio do GeoGebra na internet, o software foi criado com a mesma finalidade que propomos neste trabalho, ou seja, a do ensino e aprendizagem da matemática nas escolas básicas e secundárias. Tendo como vantagem didática de apresentar, ao mesmo tempo, duas representações diferentes de um mesmo objeto que interagem entre si: sua representação geométrica e sua representação algébrica.

O GeoGebra é aqui amplamente recomendado devido a sua característica dinamizadora, ou seja, consegue atribuir movimento a suas representações. Existem outros softwares no mercado que podem ser usados em substituição ao GeoGebra, mas, por não serem distribuído em língua portuguesa ou não serem software livre (dificultando o acesso para escolas mais carentes) não foi recomendado aqui.

4.2. Lista de discussão

As listas de discussão e um recurso de comunicação bem utilizado hoje pelos meios acadêmicos. A lista funciona como um redistribuídor de e-mail, cada e-mail enviado para o endereço da Lista de Discussão é redistribuído instantaneamente para todos os e-mails dos membros que foram cadastrados anteriormente facilitando, assim, a troca de informações em um debate.

Veja abaixo a imagem ilustrativa.

Figura1

A difusão das listas de discussão em universidades e em grupos de estudo.

Seguindo a mesma idéia de comunicação entre estudantes realizadas a muitos anos pelos grandes matemáticos a lista de discussão vem sendo usada modernizar tais comunicações e dinamizar e criar praticidade no ato de compartilhar conhecimentos. A grande inovação é o compartilhamento das informações dúvidas, sugestões, dicas e todo tipo de conhecimento que o grupo possuir.

O recurso Lista de Discussão será criado nesta prática como espaço de comunicação dos alunos entre si e com o professor. Acreditando que este recurso midiático sustenta tanto as características de compartilhador de informações, como, uma poderosa ferramenta de incentivo aos estudos, pois, o aluno se vê em  indivíduo ativo no ambiente situação desfavorável quando não participa e quando participa, e contribui, com o debate vendo suas contribuições comentadas por todos busca cada vez mais ser.


4.3. Exploração de Ambientes Interativos Virtuais Assíncronos

Exploração de Ambientes Interativos Virtuais Assíncronossituação desfavorável quando não participa e quando participa, e contribui, com o debate vendo suas contribuições comentadas por todos busca cada vez mais ser

A exploração dos recursos de comunicação digitais, os chamados de  Ambientes Interativos Virtuais Síncronos e Assíncronos, deve ser ponto forte na presente prática. Essa prática surgiu após a constatação de que tais recursos facilitam a relação do aluno com o professor.

Os usos das mídias, aqui defendidas, foram escolhidos para dar condições ao ensino da matemática. O software GeoGebra facilita a representação dos gráficos em sala de aula. Os debates utilizando a Lista de Discussão e os fóruns, modificam a posição do aluno inserido no processo; ele passa de espectador passivo para um construtor participativo do conhecimento. Modificando de forma gradativa e prazerosa sua forma de estudar.

As ferramentas midiáticas de comunicação, aqui utilizadas, serão os fóruns e lista de discussão e Messenger por maior popularidade entre os alunos e simplicidade em seu manuseio. Lembro que todas as ferramentas são bem aceitas pelos alunos, mas de forma racional e evitando o uso de muitas ferramentas na mesma prática com o intuito de não haver a divisão no debate ou a complicação no processo.

25 5. AVALIAÇÃO

A avaliação é parte integrante do processo de ensino-aprendizagem, por isso tem grande destaque aqui em nossa prática de ensino. As formas de avaliações devem ser criadas para diagnosticar o grau de aprendizado ou alguma correção, alteração que possa ser necessária, no decorrer do processo.

A participação de todos envolvidos no processo será valorizada e cobrada, garantindo uma busca por excelência na exploração dos novos recursos didáticos, aqui, inseridos. Nas palavras de Benvenutti (2002), “a avaliação deve ter comprometimento com a escola e favorecer para a formação do caráter”.

Nossa avaliação será de forma gradativa tendo uma primeira para diagnóstico dos conhecimentos que o aluno possui. Em seguida, após a introdução do conteúdo, uma avaliação formativa, em que se busca diagnosticar se tais metodologias estão atingido os resultados cognitivos esperados. E por último será aplicado uma avaliação somática em que busca mensurar o conhecimento retido e aprendido de fato.

26 6. CONSIDERAÇÕES FINAIS

Este trabalho de Conclusão de Curto é confeccionado na modalidade

Projeto de ação, e caracteriza-se como prática de ensino voltada a projeto de ensino, em que utiliza as Mídias como facilitador cognitivo. O objetivo desta prática é a de demonstrar gráficos de funções utilizando o Software Livre GeoGebra. E incrementar o debate entre os alunos, usando as Tecnologias da Informação e Comunicação, dentre elas as ferramentas síncronas e assíncronas de comunicação.

Unindo o conhecimento do aluno no uso do computador com práticas pedagógicas que utilizam softwares e ambientes virtuais de interação como ferramentas de ensino garantirão a inovação da apresentação dos conteúdos do currículo escolar e a melhoria na exploração de recursos midiáticos que facilitam a prática pedagógica.

A presente prática visa também o despertar dos professores para a tecnologia que pode ser levada para a sala de aula, com isso o desenvolvimento de novas estratégias de ensino. A escola precisa se modernizar, buscar novas formas de prender a atenção dos alunos, apresentarem os conteúdos e a dinamizar práticas utilizando as tecnologias midiáticas.

Pretende-se também mostrar que é possível transformar a forma como se ensina a matemática. O professor deve modificar sua postura frente ao ensino apresentando para os alunos meios de estudo que complementam o livro didático e as anotações de sala, ensinando a utilizar o computador como facilitador de sua aprendizagem.

27 7. REFERÊNCIAS BIBLIOGRÁFICAS

ALMEIDA, M. E.. Informática e Formação de Professores. Brasília-DF, Volume 1, 1ª Ed. MEC – ProInfo, 2000.

ARANHA, M. L. A. História da educação. São Paulo: Moderna, 1996.

BASSANEZI, R. Ensino-aprendizagem com modelagem matemática: uma nova estratégia. São Paulo: contexto, 2009.

BENVENUTTI, D. B. Avaliação, sua história e seus paradigmas educativos. Pedagogia: a Revista do Curso. Brasileira de Contabilidade. São Miguel do Oeste – SC: ano 1, n.01, p.47-51, jan.2002.

BORBA, M. C.; PENTEADO, M. G.. Informática e Educação Matemática. Belo Horizonte: Autêntica, 2003.

BRASIL, Secretária de Educação Fundamental. Parâmetros Curriculares Nacionais: matemática. Brasília: MEC, 1998.

BASSANEZI, R. Ensino-aprendizagem com modelagem matemática: uma nova estratégia. São Paulo: contexto, 2009.

DURKHEIM, É. Educação e Sociologia. São Paulo: Melhoramentos, 1978.

FINO, C. N. Vygotsky E A Zona De Desenvolvimento Proximal (Zdp): Três Implicações Pedagógicas. Revista Portuguesa de Educação, Universidade do Minho. Braga. Portugal, vol. 14, número 2, 2001. 21p. Disponível em: < http://redalyc.uaemex.mx/redalyc/pdf/374/37414212.pdf >. Acesso em: 5 de ago de 2010.

GRAMSCI, A. Os intelectuais e a organização da cultura. Rio de Janeiro: Civilização Brasileira,1968.

HOHENWARTER, M; PREINER, J. Ajuda GeoGebra 3.0. Tradução de António Ribeiro em 14 de outubro de 2007. Disponível em: < w.geogebra.org>. Acesso em: 1º out. 2010.

LIBÂNEO, J. C. Tendências pedagógicas na prática social. In: Democratização da escola pública. São Paulo, Loyola, 1985.

LIMA, E, L. Revista do Professor de Matemática – RPM. Coletânea em CDROM, Edições 1º a 52º. SBM – IME – USP , São Paulo-SP, 2000.

MCCONNELL, D. Computer-supported cooperative learning, 1998. [Disponível em: <w.statvoks.no/team/computer.htm>]. Acesso em set. 2010

MCLUHAN, H. M. Os Meios de Comunicação Como extensões do Homem. São Paulo: 15ª ed. Cultrix, 2007.

PENTEADO, M. G.; BORBA, M. de C. Informática e Educação Matemática. Belo Horizonte: Autêntica, 2003.

PRADO, M. E. E. B. Pedagogia de Projetos: Fundamentos e Implicações. PUC-Rio, CCEAD, Curso de Especialização Tecnologias em Educação, 2010. Disponível em: <http://w.eproinfo.mec.gov.br/webfolio/Mod86150/PedagogiaProjetos.pdf> Acesso em 18 ago. 2010.

SANTOS, R. M. B. Tic’s: Uma tendência no ensino de matemática. Brasil Escola, 2010. Disponível em: <http://w.meuartigo.brasilescola.com/educacao/tics-uma-tendencia-no-ensinomatematica.htm> Acesso em: 16 set. 2010.

VYGOTSKY, L. S. A formação social da mente, São Paulo: Martins Fontes, 1988.

_. Pensamento e linguagem. Ed. Ridendo Castigat Mores, Setembro 2001. http://w.ebooksbrasil.org/eLibris/vigo.html. Acesso em: 7 out. 2010.

8. APÊNDICE Prática Utilizando o GeoGebra 3.0

Caracterização do Tema

A utilização de ferramentas clássicas de exposição de conteúdos matemáticos, como exemplo o transferidor, quadro e giz, régua, compasso, limita muito a exposição de gráficos matemáticos. A utilização de softwares matemáticos traz grande inovação e praticidade nessa tarefa. Vamos descrever uma prática feita para ser ministradas nas aulas de polinômios.

Objetivos desejados

Essa prática tem como objetivo demonstrar aos alunos o que ocorre graficamente quando varia os coeficientes de um polinômio. Os alunos deverão, após o termino da aula, conseguir dizer o que ocorrerá se casa valor for alterado.

Conhecimentos prévios exigido para a aula

Os alunos deverão ter conhecimento da definição de função, e estudado o conteúdo básico (função afim, quadrática, exponencial, logarítmica) referente ao Ensino Médio.

Conteúdo

Público alvo:

Alunos cursando o terceiro ano do Ensino Médio, que tenham interesse em melhorar sua idéia gráfica da parábola que é descrita por uma função quadrática. Bem como conhecer a ferramenta GeoGebra (software) que vem sen ferramenta muito útil na compreensão gráfica da matemática.

Descrição da prática:

Primeiramente será exposta (relembrar) em quadro negro a definição de função quadrática:

Chama-se função quadrática, ou função polinomial do 2º grau, qualquer função f de IR em IR dada por uma lei da forma f(x) = ax2 + bx + c, onde a, b e c são números reais e a 0.

Expondo alguns exemplos de função quadráticas e seus respectivos coeficientes:

Alunos cursando o terceiro ano do Ensino Médio, que tenham interesse em melhorar sua idéia gráfica da parábola que é descrita por uma função quadrática. Bem como conhecer a ferramenta GeoGebra (software) que vem sen ferramenta muito útil na compreensão gráfica da matemática.

Descrição da prática: Primeiramente será exposta (relembrar) em quadro negro a definição de se função quadrática, ou função polinomial do 2º grau, qualquer f de IR em IR dada por uma lei da forma f(x) = ax2 + bx + c, onde a, b e c

Expondo alguns exemplos de função quadráticas e seus respectivos

Alunos cursando o terceiro ano do Ensino Médio, que tenham interesse em melhorar sua idéia gráfica da parábola que é descrita por uma função quadrática. Bem como conhecer a ferramenta GeoGebra (software) que vem sendo uma

Primeiramente será exposta (relembrar) em quadro negro a definição de se função quadrática, ou função polinomial do 2º grau, qualquer f de IR em IR dada por uma lei da forma f(x) = ax2 + bx + c, onde a, b e c

Expondo alguns exemplos de função quadráticas e seus respectivos

Em seguida será exposto um gráfico da equação f(x) = 3×2 – 4x + 1 que é a referida anteriormente no item i. E após a generalização do caso f(x)=ax2+bx+c e partiremos para as perguntas direta aos alunos:

Como seria uma representação mais geral de uma equação quadrática?

Conseguiremos analisar de forma geral os coeficientes graficamente?”

Então apresentaremos a ferramenta Software GeoGebra, que nos ajudará a desvendar essas incógnitas.

Após realizar a construção, atribuíndo valores quaisquer podemos realizar o que diz Pierre (Levy 1996) e em A ideografia dinâmica (1998) e (Pais 2002, p.40), sobre o uso de apresentações com movimentos para facilitar o aprendizado.

Tendo ainda que o cenário, construído com o software, possibilita ao alunado a manipulação simultânea das representações algébrica e gráfica da função. Nesse sentido, (Duval 2003, p. 15) defende que “a compreensão em matemática supõe a coordenação de ao menos dois registros de representações semióticas”

Vejamos como ficará a construção (Figura 2 é o zoom dos dados da Figura 1):

Figura 1 Figura 2

E após a mudança dos valores de a, b ou c, teremos alterações visíveis do que ocorre com o gráfico da parábola.

Veja as imagens abaixo.

FIG 1 – Alteração do valor de a FIG 2 – Alteração no valore de -a

FIG 3 – Alteração no valor de c FIG 4 – Alteração no valor de b Estratégias pedagógicas:

Será pedido aos alunos que façam modificações nos coeficientes e relate através de relatório o que foi observado quando os valores são alterados para mais ou para menos. Essa prática visa uma melhor análise dos alunos, e a fixação do conteúdo estudado.

Resultados Esperados:

Espera-se que o aluno adquira autonomia em sua busca pelo conhecimento, acima de tudo, e nesse caso especial, melhor assimilação dos conteúdos já ministrados e estudados por eles, no caso a relação dos coeficientes com o gráfico da função quadrática referente a ela.

Avaliação:

A avaliação será realizada através de diálogo com o aluno, perguntas direcionadas realizando diversas práticas direcionadas variação dos valores dos coeficientes interfere no gráfico, levantando questões a respeito do que se vê com tais mudanças de valores.

Autor: Daniel Ferreira de Assis Silva

Graduou-se em Matemática, pela UFG (Universidade Federal de Goiás) em 2006. É professor independente e já atuou em diversas Instituições do Ensino Privado da cidade de Ceres-GO, Lecionando Matemática e Física. Atua como Auxiliar Administrativo na Secretaria Municipal de Educação e Saúde de Rialma-GO.



Gostou do conteúdo? Receba nossos artigos e materiais, semanalmente, direto no seu email.


Você tem interesse em planos de aula, atividades com datas comemorativas, músicas infantis, jogos e brincadeiras, tudo isso pronto para você baixar e adaptar?


EU QUERO!

Talvez você se interesse:

Tabuada Fácil

Comentários

Carregando comentários...